home *** CD-ROM | disk | FTP | other *** search
- ;;;; "prime.scm", prime test and factorization for Scheme
- ;;; Copyright (C) 1991, 1992, 1993 Aubrey Jaffer.
- ;
- ;Permission to copy this software, to redistribute it, and to use it
- ;for any purpose is granted, subject to the following restrictions and
- ;understandings.
- ;
- ;1. Any copy made of this software must include this copyright notice
- ;in full.
- ;
- ;2. I have made no warrantee or representation that the operation of
- ;this software will be error-free, and I am under no obligation to
- ;provide any services, by way of maintenance, update, or otherwise.
- ;
- ;3. In conjunction with products arising from the use of this
- ;material, there shall be no use of my name in any advertising,
- ;promotional, or sales literature without prior written consent in
- ;each case.
-
- (require 'random)
- (require 'modular)
-
- ;;; (modulo p 16) is because we care only about the low order bits.
- ;;; The odd? tests are inline of (expt -1 ...)
-
- (define (prime:jacobi-symbol p q)
- (cond ((zero? p) 0)
- ((= 1 p) 1)
- ((odd? p)
- (if (odd? (quotient (* (- (modulo p 16) 1) (- q 1)) 4))
- (- (prime:jacobi-symbol (modulo q p) p))
- (prime:jacobi-symbol (modulo q p) p)))
- (else
- (let ((qq (modulo q 16)))
- (if (odd? (quotient (- (* qq qq) 1) 8))
- (- (prime:jacobi-symbol (quotient p 2) q))
- (prime:jacobi-symbol (quotient p 2) q))))))
-
- ;;;; Solovay-Strassen Prime Test
- ;;; if n is prime, then J(a,n) is congruent mod n to a**((n-1)/2)
-
- ;;; See:
- ;;; Robert Solovay and Volker Strassen,
- ;;; "A Fast Monte-Carlo Test for Primality,"
- ;;; SIAM Journal on Computing, 1977, pp 84-85.
-
- ;;; checks if n is prime. Returns #f if not prime. #t if (probably) prime.
- ;;; probability of a mistake = (expt 2 (- prime:trials))
- ;;; choosing prime:trials=30 should be enough
- (define prime:trials 30)
- ;;; prime:product is a product of small primes.
- (define prime:product
- (let ((p 210))
- (for-each (lambda (s) (set! p (or (string->number s) p)))
- '("2310" "30030" "510510" "9699690" "223092870"
- "6469693230" "200560490130"))
- p))
-
- (define (prime:prime? n)
- (set! n (abs n))
- (cond ((<= n 36) (and (memv n '(2 3 5 7 11 13 17 19 23 29 31)) #t))
- ((= 1 (gcd n prime:product))
- (do ((i prime:trials (- i 1))
- (a (+ 1 (random (- n 1))) (+ 1 (random (- n 1)))))
- ((not (and (positive? i)
- (= (gcd a n) 1)
- (= (modulo (prime:jacobi-symbol a n) n)
- (modular:expt n a (quotient (- n 1) 2)))))
- (if (positive? i) #f #t))))
- (else #f)))
-
- ;;;;Lankinen's recursive factoring algorithm:
- ;From: ld231782@longs.LANCE.ColoState.EDU (L. Detweiler)
-
- ; | undefined if n<0,
- ; | (u,v) if n=0,
- ;Let f(u,v,b,n) := | [otherwise]
- ; | f(u+b,v,2b,(n-v)/2) or f(u,v+b,2b,(n-u)/2) if n odd
- ; | f(u,v,2b,n/2) or f(u+b,v+b,2b,(n-u-v-b)/2) if n even
-
- ;Thm: f(1,1,2,(m-1)/2) = (p,q) iff pq=m for odd m.
-
- ;It may be illuminating to consider the relation of the Lankinen function in
- ;a `computational hierarchy' of other factoring functions.* Assumptions are
- ;made herein on the basis of conventional digital (binary) computers. Also,
- ;complexity orders are given for the worst case scenarios (when the number to
- ;be factored is prime). However, all algorithms would probably perform to
- ;the same constant multiple of the given orders for complete composite
- ;factorizations.
-
- ;Thm: Eratosthenes' Sieve is very roughtly O(ln(n)/n) in time and
- ; O(n*log2(n)) in space.
- ;Pf: It works with all prime factors less than n (about ln(n)/n by the prime
- ; number thm), requiring an array of size proportional to n with log2(n)
- ; space for each entry.
-
- ;Thm: `Odd factors' is O((sqrt(n)/2)*log2(n)) in time and O(log2(n)) in
- ; space.
- ;Pf: It tests all odd factors less than the square root of n (about
- ; sqrt(n)/2), with log2(n) time for each division. It requires only
- ; log2(n) space for the number and divisors.
-
- ;Thm: Lankinen's algorithm is O(sqrt(n)/2) in time and O((sqrt(n)/2)*log2(n))
- ; in space.
- ;Pf: The algorithm is easily modified to seach only for factors p<q for all
- ; pq=m. Then the recursive call tree forms a geometric progression
- ; starting at one, and doubling until reaching sqrt(n)/2, or a length of
- ; log2(sqrt(n)/2). From the formula for a geometric progression, there is
- ; a total of about 2^log2(sqrt(n)/2) = sqrt(n)/2 calls. Assuming that
- ; addition, subtraction, comparison, and multiplication/division by two
- ; occur in constant time, this implies O(sqrt(n)/2) time and a
- ; O((sqrt(n)/2)*log2(n)) requirement of stack space.
-
- (define (prime:f u v b n)
- (if (<= n 0)
- (cond ((negative? n) #f)
- ((= u 1) #f)
- ((= v 1) #f)
- ; Do both of these factors need to be factored?
- (else (append (or (prime:f 1 1 2 (quotient (- u 1) 2))
- (list u))
- (or (prime:f 1 1 2 (quotient (- v 1) 2))
- (list v)))))
- (if (even? n)
- (or (prime:f u v (+ b b) (quotient n 2))
- (prime:f (+ u b) (+ v b) (+ b b) (quotient (- n (+ u v b)) 2)))
- (or (prime:f (+ u b) v (+ b b) (quotient (- n v) 2))
- (prime:f u (+ v b) (+ b b) (quotient (- n u) 2))))))
-
- (define (prime:factor m)
- (if
- (negative? m) (cons -1 (prime:factor (- m)))
- (let* ((s (gcd m prime:product))
- (r (quotient m s)))
- (if (even? s)
- (append
- (if (= 1 r) '() (prime:factor r))
- (cons 2 (let ((s/2 (quotient s 2)))
- (if (= s/2 1) '()
- (or (prime:f 1 1 2 (quotient (- s/2 1) 2))
- (list s/2))))))
- (if (= 1 s) (or (prime:f 1 1 2 (quotient (- m 1) 2)) (list m))
- (append (if (= 1 r) '()
- (or (prime:f 1 1 2 (quotient (- r 1) 2)) (list r)))
- (or (prime:f 1 1 2 (quotient (- s 1) 2)) (list s))))))))
-
- (define jacobi-symbol prime:jacobi-symbol)
- (define prime? prime:prime?)
- (define factor prime:factor)
-